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Abstract. 3D Gaussian Splatting demonstrates excellent quality and
speed in novel view synthesis. Nevertheless, the huge file size of the
3D Gaussians presents challenges for transmission and storage. Current
works design compact models to replace the substantial volume and at-
tributes of 3D Gaussians, along with intensive training to distill infor-
mation. These endeavors demand considerable training time, presenting
formidable hurdles for practical deployment. To this end, we propose
MesonGS, a codec for post-training compression of 3D Gaussians. Ini-
tially, we introduce a measurement criterion that considers both view-
dependent and view-independent factors to assess the impact of each
Gaussian point on the rendering output, enabling the removal of in-
significant points. Subsequently, we decrease the entropy of attributes
through two transformations that complement subsequent entropy cod-
ing techniques to enhance the file compression rate. More specifically, we
first replace rotation quaternions with Euler angles; then, we apply re-
gion adaptive hierarchical transform to key attributes to reduce entropy.
Lastly, we adopt finer-grained quantization to avoid excessive informa-
tion loss. Moreover, a well-crafted finetune scheme is devised to restore
quality. Extensive experiments demonstrate that MesonGS significantly
reduces the size of 3D Gaussians while preserving competitive quality.

Keywords: Compression · Gaussian Splatting · Novel View Synthesis

1 Introduction

Novel view synthesis is a fundamental task in 3D vision and has significant
applications in virtual reality, augmented reality, and photography. This task in-
volves using a collection of images captured from different viewpoints, along with
their corresponding camera poses, with the objective of generating highly realis-
tic images from arbitrary viewpoints. By reparameterizing the point with a 3D
Gaussian function in the point cloud, 3D Gaussian Splatting (3D-GS) [23] shows
excellent quality and real-time rendering speed in this task. A Gaussian point
consists of a 3D coordinate, spherical harmonics (SH) coefficients to represent
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its color, an opacity parameter, a scale vector, and a rotation quaternion. 3D-
GS utilizes scale vectors and rotation quaternions to characterize the covariance
matrix of the 3D Gaussian function. The coordinates of Gaussians are typically
referred to as geometry, while the other parameters of Gaussians are denoted as
attributes. Despite the efficiency of 3D-GS, the sheer volume of Gaussians and
the multi-channel attributes within each Gaussian result in a considerable file
size. Notably, 5.27×106 Gaussians are required to represent the bicycle scene in
the Mip-NeRF 360 dataset [1], occupying 1.3 GB of storage under 32-bit float
precision. This sizable file poses challenges in transmission and storage. Hence,
it is essential to design a tailored codec for 3D Gaussians.

Due to the diverse attributes and intricate rendering procedure of the 3D-
GS, developing an efficient compression method for 3D Gaussians presents sig-
nificant challenges. Previous studies on point cloud compression [8, 12, 44, 55]
involve voxelizing the point cloud and applying transformations, quantization,
and entropy encoding. However, these approaches cannot support fine-tuning
to restore the quality of compressed 3D Gaussians and are limited to conven-
tional point clouds with basic attributes like color and normals. In contrast,
3D-GS encompasses a broader spectrum of attributes. Blindly applying exist-
ing methods results in notable artifacts due to the high sensitivity of certain
3D-GS attributes. Hence, adapting traditional compression techniques for 3D
Gaussians is non-trivial. Some concurrent works [11,17,30,32,33,35,36,63] have
explored compressing 3D Gaussians using vector quantization and finetuning.
Nevertheless, these approaches typically separate geometry from attributes dur-
ing compression, disregarding the potential similarities among attributes at the
3D geometric level. This oversight prevents efficiently utilizing geometry infor-
mation to further reduce attribute redundancy. Additionally, the requirement
for training puts tremendous pressure on real-world applications.

To address the aforementioned issues, we introduce MesonGS, a 3D Gaus-
sians codec, which employs universal Gaussian pruning, attribute transforma-
tion, and block quantization. In universal Gaussian pruning, we consider both
view-dependent and view-independent features to assess the importance of Gaus-
sians. The gradient-based importance [33] tends to select Gaussians with large
gradients rather than Gaussians that contribute significantly to the rendering
results, making it unsuitable for the poorly learned 3D-GS. In contrast, our
method accurately evaluates importance through forward propagation and is
applicable in all scenarios. Besides, compared to opacity-based importance [11],
we incorporate view-dependent color features to achieve more accurate evalua-
tions. Regarding attribute transformation, we first transform the rotation quater-
nions (4 numbers) into Euler angles (3 numbers), a lossless process that reduces
the storage requirement for each Gaussian by one number. Then, we adopt re-
gion adaptive hierarchical transform (RAHT) [8] to reduce the entropy of key
attributes – opacity, scales, Euler angles, and 0-degree SH coefficients. RAHT
involves transforming a channel of the attribute into a DC coefficient and several
concentrated distributed AC coefficients. Since the entropy of AC coefficients is
lower, the entropy coding methods can compress the attribute into a smaller size.
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For block quantization, we divide each attribute channel into multiple blocks and
perform quantization for each block individually. This approach prevents quan-
tization from becoming the quality bottleneck and provides increased flexibility.
We employ vector quantization [10] to significantly compress unimportant at-
tributes – SH coefficients with degrees greater than 0. We utilize octree to com-
press geometry and pack all the elements with LZ77 [16,59,60] codec. To achieve
a fair comparison with related works and restore the quality, we also propose
an elaborated finetune scheme. Comprehensive experiments are conducted to
demonstrate the exceptional compression quality of our method. Additionally,
we evaluate our method against previous neural radiance field (NeRF) compres-
sion techniques.

Our contributions can be summarized as follows:

– We propose two transformations to reduce the redundancy and entropy in
attributes. This involves using Euler angles to replace rotation quaternions
and applying RAHT to key attributes. These transformations lead to a 13×
increase in compression rate with negligible quality degradation.

– We derive a measure that considers both view-dependent and -independent
factors to prune the insignificant Gaussians, suiting both bounded and un-
bounded scenes. We also adopt a finer-grained method to avoid excessive in-
formation loss caused by quantization. Finally, a well-crafted finetune scheme
is devised to restore quality.

– Extensive experiments demonstrate the compression quality of our pipeline.
Comparisons with concurrent works demonstrate the universality of our
pruning and transformation strategies. Additionally, we have compared our
work with compressed NeRF to reveal the strengths and limitations between
Grid-based NeRF and 3D Gaussians in the 1MB storage.

2 Related Work

3D Gaussians Compression. Many concurrent works are proposed to com-
press 3D Gaussians. C3DGS [33] proposes a score to measure the sensitivity of
the attributes and replace the quaternions and scales with covariance. They use
vector quantization to compress color and geometry features separately. Lee et
al . [25] give a learning-based pruning strategy, utilizes residual vector quanti-
zation to compress the scales and rotations, and compresses the SH coefficients
with a NeRF. LightGaussian [11] compresses the geometry with an octree, prunes
the Gaussians based on the cumulated opacity and volumes, distills the SHs to
a lower degree, and finally compresses the remaining elements with vector quan-
tization. Compact3D [32] uses vector quantization and compresses the indices
further by sorting them and using a method similar to run-length encoding.
EAGLES [17] treats the parameters of a Gaussian as a vector and proposes an
encoder-decoder network to compress the vector into a latent code. SOGS [30]
structures the Gaussian attributes into smooth 2D grids. ReducingGS [34] intro-
duces mixed-band SH coefficients to further reduce the file size. These methods
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require a significant amount of training time to distill the information of original
3D Gaussians into the compact model, making them unsuitable for resource-
constrained scenarios and inapplicable for 3D-GS extensions [37]. Instead of re-
lying on extensive training to identify redundancy in attributes for compression,
we propose using RAHT to reveal spatial redundancy in attributes and then com-
bining it with entropy coding to reduce the file size further. Besides, compared
to [11, 33], we propose a Gaussian importance assessment index that considers
both view-dependent and -independent factors, suiting both bounded and un-
bounded scenes. Furthermore, we replace the quaternions with the Euler angles,
showing better quality than covariance-based replacement [33].
NeRF Compression. Neural Radiance Field (NeRF) compression primarily
targets grid-based NeRF [2, 5, 6, 21]. The “grid” can be voxel-grids [15, 45], tri-
planes [4], point clouds [53], or hash grids [31]. Though grid-based NeRF achieves
great acceleration, it introduces huge storage requirements, leading to the emer-
gence of NeRF compression works. VQAD [46] proposes to generalize different
versions of a NeRF with hierarchical coding methods. [9,26,57] propose to use fre-
quency domain transformation to reduce the storage demand of the voxel grids.
SHACIRA [18] and CAwa-NeRF [27] compress the hash grid of InstantNGP [31].
BiRF [43] introduces a binary quantization scheme. Masked-wavelet-NeRF [39]
and ACRF [13] adopt wavelet transform and RAHT. ReRF [48] is proposed
to compress the dynamic NeRF. To accelerate rendering, some works [7, 20, 38]
quantize features to 8 bits and save them as 2D images. NeRF and 3D-GS can be
interchanged in novel view synthesis, particularly on bounded scenes. Therefore,
a comparison between them is valuable. Our work proposes such a comparison
to reveal their core competitiveness.
Point Cloud Compression. Point cloud compression consists of geometry
compression and attribute compression. The goal of geometry compression is to
compress the 3D coordinates of points. Existing methods [28, 41] typically use
octree to organize coordinates. Attribute compression generally comprises three
steps: transform coding, quantization, and entropy coding. Transform coding in-
volves designing a careful transformation of attributes into the frequency domain
to minimize signal redundancy. For instance, [55] constructs a graph from the
point cloud and applies the graph fourier transform to attributes. [8] introduces
Haar wavelet transforms to attribute compression. Quantization is used to con-
vert coefficients from transform coding into transmitted symbols and reduce the
high-frequency components. Entropy coding [22,40,51,52] aims to encode these
symbols into a bitstream. 3DAC [12] and Song et al . [44] propose learning-based
entropy models to further reduce the size.

3 Method

3.1 Preliminary

3D-GS [23] is an explicit 3D scene representation in the form of point clouds,
utilizing Gaussians to model the scene. Each Gaussian is characterized by a



MesonGS: Post-training Compression of 3D Gaussians 5

covariance matrix Σ and a center point X, which is referred to as the mean
value of the Gaussian:

G(x) = e−
1
2X

⊤Σ−1X. (1)

To maintain the positive definiteness of the covariance matrix Σ, 3D-GS decom-
poses Σ into a scaling matrix S = diag(s), s ∈ R3 and a rotation matrix R:
Σ = RSS⊤R⊤. The rotation matrix R is parameterized by a rotation quater-
nion q ∈ R4. The backpropagation process is illustrated in [23].

When rendering novel views, the technique of splatting [54,61] is employed for
the Gaussians within the camera planes. As introduced by [62], using a viewing
transform denoted as W and the Jacobian J of the affine approximation of
the projective transformation, the covariance matrix Σ′ in camera coordinates
system can be computed by Σ′ = JWΣW⊤J⊤.

In summary, each element of 3D Gaussians has the following parameters:
(1) a 3D center µ ∈ R3; (2) a rotation quaternion q ∈ R4; (3) a scale vector
s ∈ R3; (4) a color feature defined by spherical harmonics coefficients SH ∈ Rd,
with d = 3(f + 1)2, where f is the harmonics degree; and (5) an opacity logit
o ∈ R. Specifically, for each pixel, the color and opacity of all the Gaussians are
computed using Eq. (1). The blending of N ordered points that overlap the pixel
is given by:

C =
∑
i∈N

ciαi

i−1∏
j=1

(1− αj). (2)

Here, ci and αi represent the density and color of this point computed by a
Gaussian with covariance Σ multiplied by an optimizable per-point opacity and
SH color coefficients.

3.2 Overview

As shown in Fig. 1, we first prune insignificant 3D Gaussians based on view-
dependent and -independent features. Then, we compress the remaining 3D
Gaussians. For geometric compression, octree is employed to compress the posi-
tions of the Gaussians. For attribute compression, we begin by replacing rotation
quaternions with Euler angles. Then, we categorize the attributes into important
and unimportant ones, with the former including opacity, 0-D SH coefficients,
scale vectors, and Euler angles and later including the SH coefficients in degrees
greater than 0. We apply RAHT and block quantization to important attributes.
Note that RAHT is not applied to the scale vectors at the 8-bit quantization.
Unimportant attributes are significantly compressed through vector quantiza-
tion. Finally, all components are packed using the LZ77 [16,59,60] codec.

3.3 Gaussians Pruning

As 3D-GS has a huge number of points, pruning unimportant Gaussians is a
necessary step. We first define the importance score of each Gaussian. Here the
importance score refers to the contribution to the final rendering results. For
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Fig. 1: Overview of MesonGS. 1○ We prune insignificant Gaussians by considering
both view-dependent and view-independent features. 2○ Geometry compression is per-
formed using an octree to generate voxelized coordinates for future transformations. 3○
We replace rotation quaternions with Euler angles. 4○ Further compression is achieved
by applying RAHT and 5○ block quantization to important attributes. Notably, RAHT
is not applied to the scales when the quantization bit is 8 (refer to the dashed arrow).
6○ To significantly compress the 1+D SH coefficients, vector quantization is employed.
7○ All components are packed by LZ77 [16,59,60] codec.

a Gaussian g, we define its importance score Ig as the product of the view-
dependent importance score Id and the view-independent importance score Ii:
Ig = IdIi. Based on Eq. (2), we define view-dependent importance score Id as:

Id =
∑
p∈P

αi

i−1∏
j=1

(1− αj). (3)

Here, P is the pixel set that is overlapped by the Gaussian g, and i is the rank
of Gaussian g in a set of Gaussians that overlap with the pixel p. In contrast
to VQRF [26], where the importance score is the mean value of corresponding
sample points, our method allows for the direct recording of the importance
score throughout the testing phase. LightGaussian [11] uses the opacity (αi in
Eq. (3)) as the view-dependent score. They have not considered the masking
caused by other Gaussians. The usage of backward gradients as importance
scores in C3DGS [33] is not ideal for 3D-GS that is not well-learned. Typi-
cally, Gaussians that are not well-learned exhibit larger gradients. However, these
poorly learned Gaussians may not be the significant ones, making the pruning
strategy of C3DGS ineffective in inadequately learned 3D Gaussians.

The view-independent score Ii is given by Ii = (Vnorm)
β . Here, the volume

V is the product of the scale vector. To obtain Vnorm, we normalize the V by
the 90% largest of all sorted Gaussians and clip the range between 0 and 1, β is
the hyperparameter to control the size of Ii.

In Fig. 2, we sort the importance score and visualize its cumulative distribu-
tion function (CDF). We notice that 40% of the Gaussians contain over 80% of
the importance. Hence, we use an importance threshold τ to prune Gaussians,
meaning we cut the percent of τ of the sorted Gaussians.
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(a) Bounded scenes.
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(b) Unbounded scenes.

Fig. 2: Quantile-quantile curve, which means x% of least important Gua-
sisans contributes to y% percent of total importance. For both kinds of scenes,
40% of the Gaussians contribute over 80% of the importance. The importance refers
to the contribution to the final rendering results.

3.4 Geometry Compression

After pruning, we compress the 3D positions with the octree structure. An oc-
tree recursively divides occupied voxels into eight sub-voxels until reaching the
required resolution. The occupancy symbol is composed of 8 bits (1 to 255 in
decimal), where each bit indicates the occupancy status of the corresponding
subvoxel. We use the depth d to control the size of the octree. When multi-
ple Gaussians exist within a voxel, we average the corresponding attributes for
deduplication.

3.5 Attribute Transformation and Compression

We categorize attributes into important attributes and unimportant attributes.
Important attributes include opacity, scales, rotations/Euler angles, and 0D-SH
coefficients. Here, the 0D-SH coefficient refers to SH coefficients in degree 0. The
unimportant attributes refer to the SH coefficients in degrees greater than 0.
Replacement. We replace the rotation quaternion (4 numbers) with the cor-
responding Euler angles (3 numbers). The Euler angles are three angles that
describe the orientation of a rigid body with respect to a fixed coordinate sys-
tem. This replacement can reduce the storage requirement by one floating-point
number for each Gaussian Point.

Specifically, for a quaternion q = [w, x, y, z] ∈ R4, we calculate the euler
angle e = [ϕ, θ, ψ] ∈ R3 with:


atan2(2(wx+ yz), 1− 2(x2 + y2))

−π
2 + 2atan2(

√
1 + 2(wy − xz),

√
1− 2(wy − xz))

atan2(2(wz + xy), 1− 2(y2 + z2))

. (4)

During decoding, we directly build the rotation matrix R from the Euler angles
by: 

CθCψ −CϕSψ + SϕSθCψ SϕSψ +CϕSθCψ
CθSψ CϕCψ + SϕSθSψ −SϕCψ +CϕSθSψ
−Sθ SϕCθ CϕCθ

. (5)
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Fig. 4: Effect of 1+D spherical harmonics coeffi-
cients. “FT” refers to finetune.

Here Sθ and Cθ represents sine and cosine of θ. Similarly, ϕ and ψ follow the
same notation.

As the covariance matrix is symmetrical, replacing the scales and rotation
quaternions (7 numbers) with the upper triangular part (6 numbers) of the
covariance matrix seems to be an alternative. This strategy can also reduce
the storage of one number. Our contemporary, C3DGS [33], proposes a similar
covariance-based replacement strategy. However, the subsequent quantization
steps will cause a large number of covariance matrices to become indefinite,
resulting in degraded rendering outcomes. In contrast, using Euler angles can
ensure that the positive definiteness of covariance is not compromised. The com-
parison results are illustrated in Fig. 7.
Region adaptive hierarchical transform. To reduce signal redundancy in
important attributes, we employ RAHT [8]. RAHT involves taking voxelized
coordinates from octree and converting the corresponding attributes into trans-
formed coefficients. Each channel of the transformed coefficients consists of a
direct current (DC) coefficient and several alternating current (AC) coefficients.
The low entropy of the AC coefficients enables the subsequent entropy coding
procedure to achieve a larger compression rate. Here, we briefly introduce the
RAHT through a 2D example. Fig. 3 shows how to apply RAHT to a0, a1, and
a2. First, RAHT merges the coefficients along the x axis with the transform:

T1 =
1√

w1 + w2

[ √
w1

√
w2

−√
w2

√
w1

]
, (6)

where the weight coefficient wi is the number of Gaussians that ai contains. If
ai is a leaf node in octree, then wi = 1. If ai is not a leaf node, then wi is
the sum weight of its son leaf nodes. After applying T1 to a1 and a2, we get
a DC coefficient d1 and an AC coefficient c1. DC coefficient d1 is going to do
further transformation with a0 while AC coefficients are saved for encoding. For
coefficients that have no counterpart, like a0, we transmit it to the next layer.
At the end, we obtain a DC coefficient d2 and two AC coefficients c2 and c1.
During the decoding process, we obtain the weight coefficients from the octree.
Block quantization. After applying RAHT to important attributes, we save
the DC coefficient in float and quantize the AC coefficients. We use block-wise
quantization [14, 47, 50, 58] to prevent significant quality degradation caused by
the coarse-grained channel-wise quantization. Specifically, we first partition a
channel of attributes into multiple blocks. Then we quantize a block c with:

cq = ⌊clamp(
c

Sc
+ Zc, 0, 2

b − 1)⌉, (7)
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where

Sc =
max(c)−min(c)

2b
, Zc = ⌊2b − max(c)

Sc
⌉. (8)

Here, b refers to the bit-width, ⌊·⌉ represents the rounding-to-nearest function,
and cq refers to the quantized attributes. Besides, function clamp(·) specifies
a range of values. Values below the minimum are set to the minimum. Values
above the maximum are set to the maximum.

Note that we do not apply RAHT to the scale vectors when the quantiza-
tion bit is 8. The reason is that the activation function of the scale vector is
an exponential function, which magnifies the errors caused by transformation
and quantization. We save the minimum and maximum values of all blocks of
quantized attributes for decoding.
Clustering 1+D SH coefficients. The size of spherical harmonics (SH) co-
efficients takes up 85.7% in a 3D Gaussians file. In the middle of Fig. 4, af-
ter applying 1-bit quantization to the 1+D SH coefficients, only the reflectance
is affected, while the overall structure and color remain unchanged. Therefore,
quantization is not the optimal choice for 1+D SH coefficients. We employ vector
quantization to significantly reduce the size of these SH coefficients. Specifically,
we use a codebook and a corresponding index mapping table to connect the ori-
gin vectors with the vectors in the codebook. The right side of Fig. 4 shows the
final result of our method. To reduce memory occupation and encoding time,
a batched clustering strategy [42] is used. We use multiple iterations to update
the clustering results.
Encoding. The final file contains the following components: (1) Octree; (2)
DC coefficients and Quantized coefficients; (3) Codebook and the correspond-
ing mapping table; (4) Metadata: Min-Max values of each block of quantized
coefficients, octree depth, block size. Notably, the DC coefficients, codebook,
and metadata are stored in floating-point format, whereas other components are
saved as integers. We compress them via LZ77 [16,59,60] codec.
Finetune. We propose a finetune scheme to achieve a fair comparison with base-
lines and solve the problem of former methods not supporting backpropagation.
Specifically, we fix the coordinates of pruned 3D Gaussians and only finetune
the attributes. We simulate the encoding and decoding processes during the for-
ward process. To pass the gradients during the backward process, we employ the
straight-through estimator [3] for quantization.

4 Experiments

Datasets and compression settings. (1) Mip-NeRF 360. The Mip-NeRF
360 dataset [1] contains five outdoor and four indoor scenes. Each scene con-
tains 100 to 300 images. We use the images at 1600×1063. Note that the un-
documented flower and treehill scenes are not included in our evaluation. (2)
Tank&Temples. This dataset [24] contains two scenes, including train and
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Table 1: Quantitative comparison on Mip-NeRF 360, Tank&Temples, and
Deep Blending. The best results overall are bolded in each metric, and the second-
best results are underlined.

Method Mip-NeRF 360 Tank&Temples Deep Blending
PSNR SSIM LPIPS Size (M) PSNR SSIM LPIPS Size (M) PSNR SSIM LPIPS Size (M)

3DGS [23] 28.98 0.865 0.193 641.70 23.36 0.838 0.187 421.90 29.56 0.898 0.250 703.77
C3DGS [33] 28.49 0.858 0.205 27.82 23.32 0.832 0.194 17.28 29.38 0.898 0.238 25.30
Lee et al . [25] 28.60 0.856 0.209 46.98 23.32 0.831 0.201 39.40 29.79 0.901 0.258 43.20
Our 27.70 0.838 0.224 27.62 22.85 0.822 0.208 16.99 29.08 0.895 0.260 24.76
Our-FT 28.61 0.856 0.206 27.62 23.32 0.837 0.193 16.99 29.51 0.901 0.251 24.76

Table 2: Quantitative comparison on Synthetic-NeRF. The best results overall
are bolded in each metric, and the second-best results are underlined.

Method PSNR SSIM LPIPS Size (M) Method PSNR SSIM LPIPS Size (M)
3DGS [23] 33.37 0.970 0.031 68.55 DVGO [45] 31.90 0.956 0.035 105.92
C3DGS [33] 32.94 0.967 0.033 3.68 VQRF [26] 31.77 0.954 0.036 1.43
Lee et al . [25] 33.33 0.968 0.034 8.61 ACRF [13] 31.79 0.954 0.037 1.15
Our 32.25 0.963 0.038 3.65 Our 29.37 0.947 0.051 1.03
Our-FT 32.92 0.968 0.033 3.66 Our-FT 31.75 0.962 0.042 1.03

truck. (3) Deep Blending. This dataset [19] contains two scenes, including dr-
johnson and playroom. (4) Synthetic-NeRF. This dataset was first introduced
by [29] and has been widely adopted by subsequent work. It contains 8 scenes
rendered at 800×800 by Blender. Each scene contains 100 rendered views as
the training set and 200 views for testing. As for train-test split and camera
parameters estimation, we follow the official implementation of 3D-GS. We eval-
uate rendering quality and compression performance using PSNR, SSIM [49],
LPIPS [56], size, compression rate, and decoding time. All the metrics are eval-
uated on the test set if not otherwise specified. We set the bit-width as 8 if not
otherwise specified. When calculating the important score, we only use the train-
ing dataset. To obtain the pre-trained 3D Gaussians for compression, we train
30, 000 iterations and then save the checkpoints for both datasets. We set the
background as white. Please check the supplementary material for more details.
Baselines. We compare our method with the concurrent 3D Gaussian compres-
sion works [25,33] and NeRF compression works [13,26]. We use the evaluation
results from their papers [13,25,33].

4.1 Experimental Results

Quantitative result. We compared our approach with original 3D-GS and
concurrent works. All of the model sizes are calculated after a standard zip
compression. As shown in Tab. 1 and Tab. 2, MesonGS realizes satisfactory
performance across all the combinations of methods and datasets. The offline
version of MesonGS can achieve a quality similar to the baselines. Moreover,
after finetuning, MesonGS achieves performance comparable to the baselines,
which reveals the efficiency of our finetune scheme.
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Ground Truth 3D-GS C3DGS Our-8bits Our-8bits-FT
(a) The Room scene in the Mip-NeRF 360 dataset.

3D-GS C3DGS Lee et al. Our-16 Our-16-FTOur-8 Our-8-FTGT
(b) The Chair scene in the Synthetic-NeRF dataset.

Fig. 5: Qualitative comparison. We can hardly observe visual artifacts on the ren-
dering result of the compressed model compared to its original model.
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LightGaussian OurGround Truth (Reference Image)
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C3dgs-color

LightGaussian

Fig. 6: Qualitative comparison on pruning strategy. The visual quality of our
pruning strategy is better than others.

Comparisons with NeRF compression. By now, there is no work comparing
compressed 3D Gaussians with compressed NeRF. The right side of Tab. 2 shows
the comparison of our 3D Gaussian compression method on Synthetic-NeRF
with ACRF and VQRF. We can observe that the quality metrics of baselines are
slightly better. The reason is two-fold. On the one hand, our finetune scheme
cannot support updating the coordinates. If appropriate updates could be made
to the coordinates, the overall quality of our method will be improved. On the
other hand, the file sizes of baselines are larger.
Visualization result. We compare the rendering results of all baselines in Fig. 5
across bounded and unbounded scenes. The visual difference is hard to observe
in both chair and room scenes. We also display the per-pixel mean absolute
error between ground truth and other baselines at the second line. Our finetune
scheme efficiently restores the quality loss caused by offline compression and is
highly consistent with the rendering results of 3D-GS.
Pruning strategy. Here we compare our pruning strategies with LightGaus-
sian [11] and C3DGS [33]. To achieve a fair comparison, we prune 66% of the
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Table 3: Quantitative comparison on pruning strategy. Our pruning strategy
performs better on average. The best results overall are bolded in each metric, and the
second-best results are underlined.

Methods Synthetic-NeRF Mip-NeRF 360 Average PSNRPSNR SSIM LPIPS PSNR SSIM LPIPS
C3DGS-color [33] 30.79 0.9606 0.0375 22.89 0.7852 0.2471 26.84
C3DGS-cov [33] 24.37 0.9104 0.0738 15.04 0.6992 0.3044 19.71
LightGaussian [11] 26.75 0.9372 0.0568 26.93 0.8327 0.2290 26.84
Our(Ii) 30.39 0.9591 0.0389 27.01 0.8411 0.2164 28.70
Our(IiId) 30.52 0.9597 0.0383 27.52 0.8441 0.2139 29.02

Table 4: Encoding time. Our method is the fastest.

Method NeRF-Synthetic MipNeRF-360
C3DGS [33] Lee et al . [25] MesonGS C3DGS [33] Lee et al . [25] MesonGS

Encoding Time 30 s 480 s 4 s 5 min 33 min 1 min

Gaussians for all methods. Tab. 3 shows the superiority of our pruning strategy.
Moreover, Tab. 3 indicates that it is necessary to incorporate view-dependent
importance score Id in the pruning procedure. Note that the output sizes of these
strategies are the same because they prune the same percentage of Gaussians.
We also provide a qualitative comparison in Fig. 6 and use the red arrows and
circles to mark the artifacts.

Encoding time. As shown in Tab. 4, without finetuning, MesonGS can com-
plete compression in only 20% of the time compared to concurrent works while
maintaining similar rendering quality. When the number of Gaussian points is
less than 20,000, MesonGS can complete compression quickly using only the
CPU, while baseline methods require GPU assistance.

Composition of final storage. In the Synthetic-NeRF dataset, the propor-
tions of the octree, metadata, important attributes, and unimportant attributes
are 43%, 0.04%, 34%, and 23%, respectively. In the Mip-NeRF 360 dataset,
the proportions of the above four elements are 39%, 0.02%, 47%, and 14%, re-
spectively. The octree and important attributes take up more than half of the
storage, while metadata occupies a tiny proportion. The hyperparameter setting
is consistent with the results in Tab. 2 and Fig. 5a.

Replacement strategy. We set the bit width as 16 and show the close-up ren-
dering results of Euler-angle-based replacement and covariance-based replace-
ment in the left of Fig. 7. We adjust the final file size by compressing a por-
tion of the covariance. We can see some white line artifacts on the right of the
covariance-based strategy. The reason is that the lots of covariance matrices
are not positive definite after the quantization, i.e., 92% for Euler angle-based
vs. ∼50% for covariance-based replacement. Please find more discussion in the
supplementary material.

RAHT and quantization. For 8-bit quantization, we recommend not to apply
RAHT for scales. Due to the activation function of the scale being an exponential
function, it is more sensitive than other attributes. The empirical evidences are
shown in Fig. 8. After sequentially applying the RAHT to Opacity, 0D-SH coef-
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3.5M/100% 3/3.3M/40%
Euler-angle

2/3.4M/42% 1/3.6M/46% 0.5/3.8M/52% 0.1/5.5M/92%0.2/5.3M/92%
Covariance-based replacement

Fig. 7: Euler-angle-based vs. Covariance-based. “A/B/C” refers to the “λc /
the size of the compressed file / the percent of positive-definite covariance matrices”.
Replacing scales and rotations with covariance leads to white line artifacts, which
greatly affects the visual effect. We adjust the final file size by compressing a portion
of the covariance using the λc.

R+ ScalesR+ Euler anglesR+ Opacity, 0-SHsEuler angles 
PSNR: 29.71 
Size: 1.40 MB

PSNR: 29.55 
Size: 1.20 MB

PSNR: 29.47 
Size: 1.14 MB

PSNR: 26.45 
Size: 1.04 MB

Rotations 
PSNR: 29.70
Size: 1.48 MB

Fig. 8: Visual results of different attribute transformation stages. The first
image from the left shows the baseline, which means saving the rotations quaternions in
the final storage. The second image shows the rendering results after replacing Rotation
quaternions with Euler angles. “R+*” refers to applying RAHT to *.

ficients, and Euler angles, we observe minor alterations in the rendering quality.
However, severe degradation in rendering quality occurs after applying RAHT to
Scales. The information loss caused by the operation of RAHT + Quantization
is more significant than only using Quantization, and the exponential function
amplifies this error, leading to severe performance degradation.
Block quantization. As shown in Tab. 5, when employing the per-channel
quantization strategy and lowering the pruning threshold from 66% to 50%, the
compressed file size expands while the rendering quality diminishes. This decline
in quality stems from the amplified information loss linked to the extended chan-
nel length. As the number of Gaussian points rises, the information loss further
intensifies. In contrast, block quantization fixes the size of the quantization unit,
thereby reducing information loss while providing more flexibility.

4.2 Ablation Study

We conducted several ablation studies on the Mip-NeRF 360 dataset and the
Synthetic-NeRF dataset. If not otherwise specified, all the experimental results
below have not undergone finetuning. Please find more ablation studies in the
supplementary material.
Performance of different stages. We conduct an experiment to demonstrate
the benefit of each module in MesonGS. We calculate the size after a zip com-
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Table 5: The advantage of block quantization. By fixing the length of the vec-
tor requiring quantization, block quantization prevents quantization from becoming a
performance bottleneck and provides more flexibility.

Strategy τ
Synthetic-NeRF Mip-NeRF 360

PSNR(dB) SSIM LPIPS Size(MB) PSNR(dB) SSIM LPIPS Size(MB)

Channel 66% 29.47 0.9476 0.0511 1.14 25.30 0.7533 0.3074 11.64
50% 30.65 0.9529 0.0475 1.59 25.35 0.7461 0.3147 16.47

Block 66% 29.60 0.9494 0.0490 1.21 26.28 0.8035 0.2598 12.46
50% 30.97 0.9560 0.0441 1.73 27.20 0.8238 0.2402 18.42

Table 6: Ablation study of different stages. “TQ” refers to applying RAHT and
quantization on important attributes. “Q-scales” refers to quantizing scales.

Stages Synthetic-NeRF Mip-NeRF 360
PSNR (dB) SSIM LPIPS Size (MB) PSNR (dB) SSIM LPIPS Size (MB)

3D-GS 33.37 0.9696 0.0305 68.55 28.98 0.8647 0.1931 641.73
+Prune 30.52 0.9597 0.0383 20.99 28.69 0.8612 0.1970 265.94
+Voxel 30.44 0.9592 0.0388 20.72 28.68 0.8610 0.1971 260.58
+Replace 30.44 0.9592 0.0388 20.36 28.68 0.8610 0.1971 255.61
+Cluster 29.71 0.9513 0.0469 5.63 27.74 0.8427 0.2187 79.35
+TQ 29.37 0.9476 0.0510 1.95 27.20 0.8239 0.2401 30.68
+Q-scales 29.37 0.9474 0.0511 1.03 27.20 0.8238 0.2402 18.43
+Fine-tune 31.75 0.9618 0.0416 1.03 27.45 0.8273 0.2357 18.40

pression for fair comparison. As shown in Tab. 6, compared to the uncompressed
baseline, Pruning achieves 5× compression but causes a significant PSNR drop
for bounded 360 scenes. However, such a drop is slighter for unbounded scenes.
The following stages are all influenced by the pruning stage. Of course, all of
these stages, instead of Replacement, have caused varying degrees of damage to
the rendering quality. We can see that the Replacement step is indeed a free
lunch for the 3D-GS attribute compression.
Importance threshold τ . Pruning is a necessary step for 3D Gaussian com-
pression. In Tab. 5, under the bit width of 8, we observe that pruning 33% of
points resulted in lower performance compared to pruning 66% of points. The
reason for this counterintuitive performance drop is that the bit depth of the
quantization step is too low, and pruning 33% of points in the 3D-GS model of
unbounded scenes still leaves too many points, resulting in excessive information
loss after quantization. Therefore, the quantization bit-width is the bottleneck of
overall performance here. In Tab. 5, after increasing the quantization bit-width
to 16, the performance of the 33% surpasses other baselines.

5 Conclusion

In this paper, we propose an elaborated designed 3D Gaussians codec. We pro-
pose several key components, including the universal Gaussian pruning strategy,
elaborated attribute transformation, and flexible block quantization. Extensive
experiments demonstrate the superior performance of MesonGS.
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